Branched actin networks in dendritic cell biology

Leithner, Alexander (2018) Branched actin networks in dendritic cell biology. PhD thesis, IST Austria.

[img] Text
PhD_thesis_AlexLeithner.pdf - Published Version
Restricted to Registered users only until 12 April 2019.
Available under License Creative Commons Attribution.
[IST-2018-998-v1+3]
Download (62Mb)
[img] Text (Source File)
PhD_thesis_AlexLeithner_final_version.docx - Other
Restricted to Registered users only until 12 April 2019.
Available under License Creative Commons Attribution.
[IST-2018-998-v1+2]
Download (27Mb)

Abstract

In the here presented thesis, we explore the role of branched actin networks in cell migration and antigen presentation, the two most relevant processes in dendritic cell biology. Branched actin networks construct lamellipodial protrusions at the leading edge of migrating cells. These are typically seen as adhesive structures, which mediate force transduction to the extracellular matrix that leads to forward locomotion. We ablated Arp2/3 nucleation promoting factor WAVE in DCs and found that the resulting cells lack lamellipodial protrusions. Instead, depending on the maturation state, one or multiple filopodia were formed. By challenging these cells in a variety of migration assays we found that lamellipodial protrusions are dispensable for the locomotion of leukocytes and actually dampen the speed of migration. However, lamellipodia are critically required to negotiate complex environments that DCs experience while they travel to the next draining lymph node. Taken together our results suggest that leukocyte lamellipodia have rather a sensory- than a force transducing function. Furthermore, we show for the first time structure and dynamics of dendritic cell F-actin at the immunological synapse with naïve T cells. Dendritic cell F-actin appears as dynamic foci that are nucleated by the Arp2/3 complex. WAVE ablated dendritic cells show increased membrane tension, leading to an altered ultrastructure of the immunological synapse and severe T cell priming defects. These results point towards a previously unappreciated role of the cellular mechanics of dendritic cells in T cell activation. Additionally, we present a novel cell culture based system for the differentiation of dendritic cells from conditionally immortalized hematopoietic precursors. These precursor cells are genetically tractable via the CRISPR/Cas9 system while they retain their ability to differentiate into highly migratory dendritic cells and other immune cells. This will foster the study of all aspects of dendritic cell biology and beyond.

Item Type: Thesis (PhD)
DOI: 10.15479/AT:ISTA:th_998
Subjects: 500 Science > 570 Life sciences; biology
500 Science > 570 Life sciences; biology > 571 Physiology
500 Science > 590 Animals (zoology) > 599 Mammalia (Mammals)
600 Technology > 610 Medicine and health
Research Group: Sixt Group
Depositing User: Alexander Leithner
Date Deposited: 12 Apr 2018 13:22
Last Modified: 16 Apr 2018 07:10
URI: https://repository.ist.ac.at/id/eprint/998

Actions (login required)

View Item View Item