The influence of sequence context on the evolution of bacterial gene expression

Steinrueck, Magdalena (2018) The influence of sequence context on the evolution of bacterial gene expression. PhD thesis, IST Austria.

[img] Text
Thesis_Steinrueck_final.pdf - Published Version
Restricted to Repository staff only until 9 November 2019.
Available under License All rights reserved.
[IST-2018-1059-v1+1]
Download (7Mb)
[img] Text
Thesis_Steinrueck_final.docx - Published Version
Restricted to Repository staff only
Available under License All rights reserved.
[IST-2018-1059-v1+2]
Download (8Mb)

Abstract

Expression of genes is a fundamental molecular phenotype that is subject to evolution by different types of mutations. Both the rate and the effect of mutations may depend on the DNA sequence context of a particular gene or a particular promoter sequence. In this thesis I investigate the nature of this dependence using simple genetic systems in Escherichia coli. With these systems I explore the evolution of constitutive gene expression from random starting sequences at different loci on the chromosome and at different locations in sequence space. First, I dissect chromosomal neighborhood effects that underlie locus-dependent differences in the potential of a gene under selection to become more highly expressed. Next, I find that the effects of point mutations in promoter sequences are dependent on sequence context, and that an existing energy matrix model performs poorly in predicting relative expression of unrelated sequences. Finally, I show that a substantial fraction of random sequences contain functional promoters and I present an extended thermodynamic model that predicts promoter strength in full sequence space. Taken together, these results provide new insights and guides on how to integrate information on sequence context to improve our qualitative and quantitative understanding of bacterial gene expression, with implications for rapid evolution of drug resistance, de novo evolution of genes, and horizontal gene transfer.

Item Type: Thesis (PhD)
DOI: 10.15479/AT:ISTA:th1059
Subjects: 500 Science > 570 Life sciences; biology > 576 Genetics and evolution
500 Science > 570 Life sciences; biology > 579 Microorganisms, fungi, algae
Research Group: Guet Group
Depositing User: Magdalena Steinrueck
Date Deposited: 09 Nov 2018 12:13
Last Modified: 09 Nov 2018 12:20
URI: https://repository.ist.ac.at/id/eprint/1059

Actions (login required)

View Item View Item